Параметри
Study of charge transfer mechanisms in cobalt-substituted copper ferrites
Тип публікації :
Стаття
Дата випуску :
листопад 2025 р.
Автор(и) :
Mazurenko, Julia
Department of Physics, Taras Shevchenko National University of Kyiv
Kaykan, Larysa
Institut metalofiziki imeni G V Kurdumova Nacional'na akademia nauk Ukraini
Mokliak, Volodymyr
G.V. Kurdyumov Institute for Metal Physics
Mateusz M. Marzec
Academic Centre for Materials and Nanotechnology, AGH University of Krakow
Мова основного тексту :
English
eKNUTSHIR URL :
Журнал :
Journal of Materials Science: Materials in Electronics
Том :
36
Випуск :
33
ISSN :
0957-4522
Цитування :
Mazurenko, J., Kaykan, L., Mokliak, V., Marzec, M. M., Matzui, L., Vovchenko, L., & Yakovenko, O. (2025). Study of charge transfer mechanisms in cobalt-substituted copper ferrites. Journal of Materials Science: Materials in Electronics, 36(33). https://doi.org/10.1007/s10854-025-16193-w
In this study, CoxCu1-xFe2O4 (x = 0.0–1.0) spinel ferrites were synthesized by the citrate sol–gel autocombustion method and systematically investigated to clarify composition-dependent charge transport mechanisms. X-ray diffraction and FTIR confirmed spinel formation and revealed systematic cation redistribution with cobalt substitution. X-ray photoelectron spectroscopy (XPS) further verified the coexistence of Fe3+/Fe2+ and Co2+/Co3+ redox couples together with oxygenvacancy–related states, providing direct evidence of multiple charge transfer pathways. Temperature-dependent conductivity showed thermally activated behavior, with a slope change above 373 K in Co-rich samples (x ≥ 0.8), signaling a transition in the dominant conduction process. At low temperatures (298–348 K), transport was directed by grain boundary and defect-related hopping, while long-range small-polaron hopping between Fe2+/Fe3+ dominated at elevated temperatures. Increasing Co content introduced additional Co2+/Co3+ valence fluctuations, enhancing localized dielectric relaxation and structural disorder. AC conductivity analysis demonstrated decreasing activation energy with increasing frequency, consistent with enhanced carrier mobility. The data were successfully fitted using Jonscher’s universal power law, its modified form, and the Almond– West model. Fitting revealed a composition-driven increase in onset frequency ωH from ~ 4 kHz in CuFe2O4 to ~ 87 kHz in CoFe2O4, together with anomalously high dispersion parameters (s > 1, m > 1) in Co-rich samples, indicating strong interfacial polarization and dipolar relaxation. A distinct low-frequency break near 10 Hz in CuFe2O4 was attributed to structural transformation. The combined structural, spectroscopic, and electrical analyses demonstrating a clear evolution from long-range Fe2+/Fe3+ hopping in Cu-rich ferrites to localized relaxation and interfacial polarization in Co-rich members. This tunability, linked to cation distribution and oxygen-vacancy formation, positions CoxCu1-xFe2O4 as a promising spinel system for high-frequency dielectric, EMI shielding, and microwave absorption applications.
Ключові слова :
Галузі знань та спеціальності :
10 Природничі науки
Галузі науки і техніки (FOS) :
Природничі науки
Тип зібрання :
Publication
Файл(и) :
Вантажиться...
Формат
Adobe PDF
Розмір :
2.87 MB
Контрольна сума:
(MD5):ea90b5dcaf804e21c72d29575ef45f6b
Ця робота розповсюджується на умовах ліцензії Creative Commons CC BY
10.1007/s10854-025-16193-w